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Abstract

We rederive in a simplified version the Lehmann–Sommers eigenvalue
distribution for the Gaussian ensemble of asymmetric real matrices, invariant
under real orthogonal transformations, as a basis for a detailed derivation of a
Pfaffian generating functional for n-point densities. This produces a simple
free-fermion diagram expansion for the correlations leading to quaternion
determinants in each order n. All will explicitly be given with the help of
a very simple symplectic kernel for even dimension N. The kernel is valid for
both complex and real eigenvalues and describes a deep connection between
both. A slight modification by an artificial additional Grassmannian also solves
the more complicated odd-N case. As illustration, we present some numerical
results in the space C

n of complex eigenvalue n-tuples.

PACS numbers: 02.50.−r, 05.40.−a, 75.10.Nr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a recent short communication [1] a simple derivation of the n-point eigenvalue correlations
for the real Ginibre ensemble was announced, which will be presented here in more detail
and extended to most general cases. Ginibre [2], when he proposed his three types of
Gaussian non-Hermitian matrix ensembles with complex, quaternion real and real entries
respectively, was not able to solve the correlations for the real ensemble invariant under
orthogonal transformations. It took quite a long time until Lehmann and Sommers [3]
derived the joint probability density of eigenvalues, which is somewhat difficult to understand
since the eigenvalues can be real or pairwise complex conjugate. Below we will present a
simplified version of the derivation since we need it for obtaining a generating functional for the
correlations, which we present as symmetric n-point densities Rn(z1, z2, . . . , zn) in the space
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of complex eigenvalue n-tuples (z1, z2, . . . , zn). These include, as singular contributions,
correlations with real eigenvalues and with complex conjugate pairs.

Edelman [4] rederived the joint probability density of eigenvalues some years later and
determined the 1-point density of complex eigenvalues. In a somewhat earlier paper Edelman,
Kostlan and Shub [5] calculated the density of real eigenvalues and determined their probability.
We will use both results here to calculate a very simple skew-symmetric kernel KN(z1, z2)

which governs all correlation functions. This kernel follows by a simple argument from
Edelman’s complex density, it helps us to invert a large antisymmetric matrix, the result of
which turns out to be simply tridiagonal. This is of course possible only for even dimension N.
In this paper we will also show how to generalize the result for odd N. In that case additional
information is derived from the result of Edelman, Kostlan and Shub to calculate the inverse
of the large (N + 1)-dimensional antisymmetric matrix that determines the kernel KN(z1, z2).
In more recent work Akemann and Kanzieper calculated the smooth complex correlations as
Pfaffians [6], Sinclair derived a generating Pfaffian functional [7] and Forrester and Nagao
[8, 9] were able to determine the real–real and complex–complex correlations as Pfaffians
with the help of skew-orthogonal polynomials. Without mentioning the paper [1] Borodin
and Sinclair [10, 11] generalized this to more general and also to crossed correlations. The
general solution for odd dimension N is not contained in these papers.

Here we will use Grassmannians to derive a simple free fermion zero-dimensional field
theory, which presents the n-point density as a diagram expansion that turns out to be a
quaternion determinant of a 2n× 2n selfdual matrix equivalent to a Pfaffian of a certain skew-
symmetric matrix. The fermionic Wick theorem helps us to work with the complicated algebra
of the Pfaffians. The odd-dimensional case can be managed by introducing an additional
artificial Grassmannian and again the resulting large antisymmetric matrix, which we need to
invert for perturbation expansion, turns out to have a simple tridiagonal inverse. Finally we
will present the correlation functions in a form analytic in the dimension N valid for even and
odd N. As illustration we show numerical simulations for 1-, 2- and 3- point densities and
numerical presentations of analytical results for 1- and 2- point correlation functions.

Let us mention that the real asymmetric Gaussian ensemble has many applications in
physics and social sciences, such as biological webs [12], neural networks [13] directed
quantum chaos [14], financial markets [15] and quantum information theory [16]. Our
paper is concerned with the correlations of the eigenvalues zi = �i of such real matrices
Jij (1 � i, j � N) which fulfil the characteristic equation det(Jij − z) = 0 and therefore are
real or pairwise complex conjugate.

2. Joint density of eigenvalues

We recall the derivation of the joint density of eigenvalues for the real Ginibre ensemble, which
we simplify in the following. The normalized measure for the N-dimensional real asymmetric
random matrix Jij is given by

dμ(J ) =
1...N∏
i,j

(
dJij√

2π

)
exp

⎛⎝−1

2

1...N∑
i,j

J 2
ij

⎞⎠ . (1)

For the joint density of eigenvalues �i we first consider the case of dimension N = 2, because
this already shows the essential features.
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2.1. Dimension N = 2

The matrix J = (
A B

C D

) = OJ̃O−1 may be brought by an orthogonal transformation O to the
form

J =
(

cos φ sin φ

−sin φ cos φ

)(
λ1 δ

−δ λ2

)(
cos φ −sin φ

sin φ cos φ

)
=
(

(λ1 + λ2)/2 δ

−δ (λ1 + λ2)/2

)
+

λ1 − λ2

2

(
cos 2φ −sin 2φ

−sin 2φ −cos 2φ

)
. (2)

Here the range of parameters is λ1 > λ2, 0 � φ � π and −∞ < δ < ∞. λ1, λ2 are
the eigenvalues of the symmetric part of J , φ is the angle of rotation which diagonalizes the
symmetric part of J and δ determines the skew-symmetric part of J . Note that

( 0 δ

−δ 0

)
commutes

with
( cos φ sin φ

−sin φ cos φ

)
and thus cannot be brought to a diagonal form by such a transformation.

With the skew-symmetric matrix O−1 dO = ( 0 dφ

−dφ 0

)
we obtain

dJ = O(O−1 dOJ̃ − J̃O−1 dO + dJ̃ )O−1. (3)

For the Jacobian we may drop the rotation of the increment (3) and from

O−1 dOJ̃ − J̃O−1 dO + dJ̃ =
(

dλ1 dδ + dφ(λ2 − λ1)

−dδ + dφ(λ2 − λ1) dλ2

)
(4)

we find

∂(A,B,C,D)

∂(φ, δ, λ1, λ2)
=

∣∣∣∣∣∣∣∣
0 λ2 − λ1 λ2 − λ1 0
0 1 −1 0
1 0 0 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 2(λ1 − λ2). (5)

Thus the measure in the new parametrization is given by

dμ(J ) = 1

(2π)2
dφ dδ dλ1 dλ2 2(λ1 − λ2) e−(λ2

1+λ2
2+2δ2)/2 (6)

which is positive for λ1 > λ2, 0 � φ � π and −∞ < δ < ∞.
A check of normalization shows that

∫
dμ(J ) = 1.

Let us now go to the eigenvalues �± of J which are obtained from∣∣∣∣ λ1 − � δ

−δ λ2 − �

∣∣∣∣ = �2 − (λ1 + λ2)� + λ1λ2 + δ2 = 0. (7)

Therefore

�± = λ1 + λ2

2
±
√(

λ1 − λ2

2

)2

− δ2. (8)

On the other hand we can also write

λ1,2 = �+ + �−
2

±
√(

�+ − �−
2

)2

+ δ2 (9)

with λ1 > λ2. Since λ1, λ2 are real we have

δ2 � −
(

�+ − �−
2

)2

(10)
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which is only relevant if �+ and �− are complex conjugate of each other. �± are either both
real for

(
λ1−λ2

2

)2 � δ2 or complex for δ2 >
(

λ1−λ2
2

)2
. In the last case we choose

�± = λ1 + λ2

2
± i

√
δ2 −

(
λ1 − λ2

2

)2

(11)

such that Im �+ > 0. Now we want to integrate out φ and δ for fixed �+,�− and find first

∂(�+,�−)

∂(λ1, λ2)
= λ1 − λ2

�+ − �−
(12)

which means

(λ1 − λ2) dλ1 dλ2 = (�+ − �−) d�+ d�− (13)

valid in a sense of an alternating product of differentials, also in the case if �+,�− are
complex. Integrating out φ and δ we obtain for the measure of eigenvalues

dμ(�+,�−) = 1

(2π)2

∫ π

0
dφ

∫
R

dδ · d�+ d�−2(�+ − �−) e−(�2
++�2

−+4δ2)/2, (14)

where δ is integrated over the region R given by equation (10). If �± are real this yields
simply

dμ(�+,�−) = 1

2
√

2π
d�+ d�−(�+ − �−) e−(�2

++�2
−)/2 (15)

and if �± are complex

dμ(�+,�−) = 1

2
√

2π
d�+ d�−(�+ − �−) e−(�2

++�2
−)/2 erfc(|Im �+|

√
2) (16)

with erfc(z) = 2√
π

∫∞
z

dx e−x2
. Formula (16) in this form is also valid for the real case. This

measure is positive, since in the real case we assume �+ > �− and in the complex case
�± = x ± iy we have d�+ d�− = (dx + i dy)(dx − i dy) = −2i dx dy and y > 0.

We can also check the normalization. For the real eigenvalues we obtain∫
�±real

dμ(�+,�−) = 1√
2
. (17)

This is the probability that both eigenvalues are real. For the complex part we obtain correctly∫
�±complex

dμ(�+,�−) = 1 − 1√
2

(18)

such that total probability is 1.

2.2. General derivation

We start again from equation (1). The dimension N is even or odd, we will see that the odd
case is more complicated. Again we will bring J by an orthogonal transformation O to a kind
of lower triangular form

J = OJ̃O−1 = O(� + �)O−1 (19)

with in the even case 1
2N2 × 2 blocks � in the diagonal and in the odd case one

1 × 1 block together with 1
2 (N − 1)2 × 2 blocks in the diagonal. Then we again obtain

equation (3) for the increment dJ . Since O−1 dO is skew-symmetric we can consider dJ̃ and
(O−1 dOJ̃ − J̃O−1 dO)above (i.e. where J̃ is zero) as independent variables. The latter may be
reduced to (O−1 dO� − �O−1 dO)above with Jacobian 1 due to the triangular structure of �,
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and these again to (O−1 dO)above with Jacobian
∏′

i<j (�i −�j) where �i are the eigenvalues
of �. Here

∏′ means that the blocks in the diagonal are excluded:
∏′

i<j = ∏
above. If the

blocks � are themselves diagonal this is easy to see. But it is then even generally true by
diagonalization of the blocks � in the generic case.

Thus we integrate first over O(N)/O(2)N/2 in the even-N case and over
O(N)/O(2)(N−1)/2 × O(1) in the odd-N case, that is over the orthogonal group modulo
rotations which leave the diagonal block structure invariant. Then we integrate over �. For
the remaining blocks in the diagonal we can use our two-dimensional result from section 2.1.
Finally we arrive at the result derived by Lehmann and Sommers [3] and rediscovered by
Edelman [4]

dμ(�1,�2, . . . , �N) = KN · d�1 . . . d�N

×
∏
i<j

(�i − �j) · e−∑i �2
i /2 ·

(∏
i

erfc(|Im �i |
√

2)

)1/2

(20)

with

KN = V O(N) · 2−N(2π)−N(N+1)/4. (21)

The constant KN comes from V O(N)/(4π)N/2 in the even case and V O(N)/(4π)(N−1)/2 · 2
in the odd case and integration over �. In both cases the result is the same.

V O(N) =
N∏

d=1

2πd/2

	(d/2)
=
∫ ∣∣∣∣∏

i<j

(O−1 dO)ij

∣∣∣∣ (22)

is the volume of the N-dimensional orthogonal group.
Here we have to assure that the transformation is unique. Thus the eigenvalues �i

have to be different and arranged in a special order. If all eigenvalues are real we
assume �1 > �2 > �3 · · · . If two eigenvalues are complex we assume �1 = �2 and
Im �1 = −Im �2 > 0 and �3 > �4 > �5 · · · . If four eigenvalues are complex we assume
�1 = �2,�3 = �4, Re �1 > Re �3, Im �1, Im �3 > 0 and �5 > �6 · · ·, and so on. The
measure is written in such a way that it is positive even in the complex case for which e.g.
�1 = �2 = x1 + iy1.

Now we want to determine the correlation functions. To this end, we go over to two-
dimensional variables

� → z = x + iy with d2z = dx dy. (23)

Then we ask for the symmetrized probability P(z1, z2, . . . , zN) d2z1 . . . d2zN that the complex
eigenvalue tuple (z1, z2, . . . , zN) appears in the volume element d2z1 . . . d2zN , where now we
drop the restrictions for �i = zi .

3. Generating functional

3.1. Definition

We are interested in the n-point densities (or correlation functions)

Rn(z1, z2, . . . , zn) = δ

δf (z1)
. . .

δ

δf (zn)
Z[f ]

∣∣∣∣
f ≡1

(24)

with

Z[f ] =
∫

d2z1 . . . d2zN P (z1, z2, . . . , zN)f (z1) . . . f (zN). (25)
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Recall that the variables �k = zk = xk + iyk are considered here as two-dimensional vectors.
We obtain Z[f ] by integrating over our joint density (20). Here we have to distinguish between
the different cases: all zk real, two eigenvalues complex, four eigenvalues complex and so on:

Z[f ] = KN

∫
d2z1 . . . d2zNf (z1) . . . f (zN)

∏
i<j

(zi − zj )
∏
k

e−z2
k/2(erfc(|Im zk|

√
2))1/2

×{δ(y1)δ(y2) . . . δ(yN)
(x1 > x2 > · · · > xN)

+ (−2i)
(y1)δ(y1 + y2)δ(x1 − x2)δ(y3) . . . δ(yN)
(x3 > · · · > xN)

+ (−2i)2
(y1)
(y3)δ
2(z1 − z2)δ

2(z3 − z4)
(x1 − x3)

× δ(y5)δ(y6) . . . δ(yN)
(x5 > x6 > · · · > xN) + · · ·} (26)

By integrating over with the symmetric function f (z1) . . . f (zN) the integrand will
automatically be symmetrized. We used the notation δ2(z1 − z2) = δ(y1 + y2)δ(x1 − x2).

(x1 > x2 > · · · > xN) stands for the restriction x1 > x2 > · · · > xN .

3.2. Vandermonde determinant

Let us write the Vandermonde determinant as∏
i<j

(zi − zj ) = (−1)N(N−1)/2
∏
i>j

(zi − zj ) = (−1)
N(N−1)

2 det
[
zk−1

1 , zk−1
2 , . . . , zk−1

n

]
(27)

with k = 1, 2, . . . , N . The determinant can be written with Grassmannian variables η∗
k , ηl

and Berezin integration (e.g., see the textbook [17]) as follows:∏
i>j

(zi − zj ) =
∫

dη∗
1 dη1 . . . dη∗

N dηN exp

(
−
∑
kl

η∗
kz

k−1
l ηl

)
. (28)

Integrating further out one set of Grassmannians (ηl) we obtain∏
i<j

(zi − zj ) =
∫

dη∗
1 dη∗

2 . . . dη∗
N

(∑
k

η∗
kz

k−1
1

)(∑
k

η∗
kz

k−1
2

)
. . .

(∑
k

η∗
kz

k−1
N

)
. (29)

Note the important property of equation (29) that the integrand factorizes in a product of
identical functions of different arguments zi .

3.3. The real case

In the case that all eigenvalues are real we have to integrate a function f̃ (x1) . . . f̃ (xN), where
f̃ (x) is actually Grassmannian from section 3.2 with the restriction


(x1 − x2)
(x2 − x3) . . . 
(xN−2 − xN−1)
(xN−1 − xN), (30)

where 
(x) is the Heaviside step function = 1 for x > 0 and 0 for x < 0. As one sees from
equations (26), (29) the function f̃ (z) is precisely given by

f̃ (z) = e−z2/2(erfc(|Im z|
√

2))1/2
∑

k

η∗
kz

k−1. (31)

Using Mehta’s method of alternating variables we integrate first over xN, xN−2, xN−4 and so
on and obtain an integral

I =
∫

. . . f̃ (xN−3)

∫ xN−3

xN−1

dxN−2f̃ (xN−2)f̃ (xN−1)

∫ xN−1

−∞
dxN f̃ (xN). (32)

6
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Now we use that f̃ (x) is Grassmannian and therefore also
∫ x

−∞ dxN f̃ (xN) for which the
square vanishes. Thus we may replace the above result by

I =
∫

. . . f̃ (xN−3)

∫ xN−3

−∞
dxN−2f̃ (xN−2)f̃ (xN−1)

∫ xN−1

−∞
dxN f̃ (xN). (33)

There remains the restriction x1 > x3 > · · · > xN−1 for even N, dropping it we obtain

I = 1

(N/2)!

[∫ +∞

−∞
dx1f̃ (x1)

∫ x1

−∞
dx2f̃ (x2)

]N/2

. (34)

And if N is odd we have

I =
∫ +∞

−∞
dxf̃ (x)

1

((N − 1)/2)!

[∫ +∞

−∞
dx1f̃ (x1)

∫ x1

−∞
dx2f̃ (x2)

](N−1)/2

. (35)

3.4. General case

Now we first assume that N is even and all eigenvalues are pairwise complex conjugate. We
have the restriction (besides z1 = z2, z3 = z4 etc; y1, y3, . . . , yN−1 > 0)


(x1 − x3)
(x5 − x7) . . . 
(xN−3 − xN−1). (36)

Dropping the restriction we obtain for the integral over f̃ (z1) . . . f̃ (zN)

I = 1

(N/2)!

[
−2i

∫
d2z
(y)f̃ (z)f̃ (z)

]N/2

. (37)

Now it is easy to sum over all mixed cases. For even N we obtain

I = 1

(N/2)!

N/2∑
M=0

{(
N/2
M

)[
−2i

∫
d2z
(y)f̃ (z)f̃ (z)

]M

×
[∫ +∞

−∞
dx1f̃ (x1)

∫ x1

−∞
dx2f̃ (x2)

] N
2 −M

}

= 1

(N/2)!

[
−2i

∫
d2z
(y)f̃ (z)f̃ (z) +

∫ +∞

−∞
dx1f̃ (x1)

∫ x1

−∞
dx2f̃ (x2)

]N/2

(38)

and similarly in the odd case we obtain

I =
∫ +∞

−∞
dxf̃ (x)

1(
N−1

2

)
!

[
−2i

∫
d2z
(y)f̃ (z)f̃ (z)

+
∫ +∞

−∞
dx1f̃ (x1)

∫ x1

−∞
dx2f̃ (x2)

](N−1)/2

. (39)

3.5. Z[f ] as a Pfaffian

Now we may write the generating functional as integral over Grassmannians (in the even-N
case)

Z[f ] = KN

∫
dη∗

1 dη∗
2 . . . dη∗

N

1

(N/2)!

[
−1

2

1...N∑
kl

η∗
k Ãklη

∗
l

]N/2

= KN

∫
dη∗

1 dη∗
2 . . . dη∗

N exp

(
−1

2

∑
kl

η∗
k Ãklη

∗
l

)
(40)

7
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with the skew-symmetric matrix

Ãkl =
∫

d2z1 d2z2f (z1)f (z2)F(z1, z2)z
k−1
1 zl−1

2 (41)

and the skew-symmetric measure

F(z1, z2) = e−(z2
1+z2

2)/2[2iδ2(z1 − z̄2){
(y1)erfc(y1

√
2)

−
(y2)erfc(y2

√
2)} + δ(y1)δ(y2)(
(x2 − x1) − 
(x1 − x2))]. (42)

We have antisymmetrized because η∗
k are Grassmannians. Such an expression for Z[f ] is

called a Pfaffian

Z[f ] = KN Pfaff(Ã) = KN

√
det(Ã). (43)

The Pfaffian is an analytic square root of the determinant det(Ã). It is only defined for an
antisymmetric matrix. In this case we know that for positive f (z) Pfaff(Ã) is positive, such
that the square root of the positive determinant det(Ã) is also positive. We actually need f (z)

only in an infinitesimal region near f (z) ≡ 1.
We may immediately consider odd N. In that case Ãkl has always a zero eigenvalue and

cannot be inverted (what we will need for perturbation expansions). Therefore we increase
artificially the number of Grassmannians by 1

Z[f ] = KN

∫
dη∗

1 . . . dη∗
N+1η

∗
N+1

∫
dxf (x) e−x2/2

N∑
k=1

η∗
kx

k−1 e− 1
2

∑1...N
kl η∗

k Ãklη
∗
l

= KN

∫
dη∗

1 . . . dη∗
N+1 exp

(
−1

2

∑
nm

η∗
nB̃nmη∗

m

)
. (44)

Now n,m = 1, 2, . . . , N + 1 and

B̃n,m =
[

Ãkl C̃k

−C̃l 0

]
(45)

with

C̃k =
∫

dxf (x) e−x2/2xk−1. (46)

Thus we obtain in the odd-N case

Z[f ] = KN Pfaff(B̃nm). (47)

The correlation functions can be found by multiple derivating of Z[f ] w.r.t. f (z) at f (z) ≡ 1.

4. 1-point density

To calculate the 1-point density we use

R1(z) = δZ[f ]

δf (z)

∣∣∣∣
f ≡1

= δ ln Z[f ]

δf (z)

∣∣∣∣
f ≡1

. (48)

8
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4.1. Even N, complex eigenvalues

In the even-N case we have

R1(z) = 1

2

δ ln det Ã

δf (z)
= 1

2
Tr

1

Ã

δÃ

δf (z)

∣∣∣∣
f ≡1

, (49)

where Ãkl is given by equation (41). Let us recall Akl = Ãkl|f ≡1 and introduce the kernel

KN(z2, z1) =
1...N∑
k,l

A−1
kl zk−1

2 zl−1
1 . (50)

Then we obtain

R1(z1) =
∫

d2z2 F(z1, z2)KN(z2, z1) (51)

with F(z1, z2) given by equation (42). If we insert equation (42) we obtain

R1(z1) = RC
1 (z1) + δ(y1)R

R
1 (x1) (52)

with

RC
1 (z1) = 2i sgn(y1) erfc(|y1|

√
2) e−x2

1 +y2
1KN(z1, z1) (53)

and

RR
1 (x1) =

∫ +∞

−∞
dx2 sgn(x2 − x1) e−(x2

1 +x2
2 )/2KN(x2, x1), (54)

which is a smooth part RC
1 (z1) in the complex plane and a part RR

1 (x1) concentrated on the
real axis.

If we compare RC
1 (z1) with Edelman’s expression [4] for the complex 1-point density we

find for KN(z2, z1) using that z1 and z1 are independent variables

KN(z2, z1) = z2 − z1

2
√

2π

N−2∑
n=0

(z1z2)
n

n!
=

1...N∑
k,l

A−1
kl zk−1

2 zl−1
1 . (55)

Thus surprisingly, the skew symmetric matrix A−1
kl has a very simple tridiagonal structure

A−1
kl = 1

2
√

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
0! 0 . . . 0

1
0! 0 − 1

1!

. . .
...

0 1
1!

. . .
. . . 0

...
. . .

. . .
. . . − 1

(N−2)!

0 . . . 0 1
(N−2)! 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(56)

which leads to Edelman’s expression

RC
1 (z) = 2|y|√

2π
erfc(|y|

√
2) e−x2+y2

N−2∑
n=0

|z|2n

n!
. (57)

For N = 2 it agrees with our two-dimensional expression, equation (16). Note that R1(z) as
a density is normalized to N:

∫
d2zR1(z) = N . Similarly

∫
d2z1 d2z2 R2(z1, z2) = N(N − 1)

and so on.
Using the formula

e−v

N∑
n=0

vn

n!
=
∫ ∞

v

du e−u uN

N !
(58)

9
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we can also write

RC
1 (z) = 2|y|√

2π
erfc(

√
2|y|) e2y2

∫ ∞

|z|2
du e−u uN−2

	(N − 1)
(59)

analytic in N. From (56) it is easy to check the normalization (equations (21), (22)) using the
duplication formula for the Gamma function. Note that Pfaff (Akl) is positive.

4.2. Even N, real eigenvalues

Since the same analytic kernel appears also in the density of real eigenvalues, equation (54),
we have using equation (58)

RR
1 (x1) = 1

2
√

2π

∫
dx2 sgn(x2 − x1) e− (x1−x2)2

2 (x2 − x1)

∫ ∞

x1x2

du e−u uN−2

(N − 2)!
. (60)

Integration by parts yields

RR
1 (x1) = 1√

2π

∫ ∞

|x1|2
du

e−uuN−2

(N − 2)!

− 1

2
√

2π

∫ +∞

−∞
dx2 sgn(x2 − x1)

x1(x1x2)
N−2

(N − 2)!
e−(x2

1 +x2
2 )/2

= R̃R
1 (x1) − DNxN−1

1 e−x2
1 /2
(N odd) (61)

with

R̃R
1 (x1) = 1√

2π

∫ ∞

|x1|2
du e−u uN−2

	(N − 1)

+
1√
2π

∫ |x1|

0
dx e−x2/2 xN−2

	(N − 1)
|x1|N−1 e−x2

1 /2 (62)

and

DN =
∫ ∞

0

dx e−x2/2xN−2

√
2π	(N − 1)

= 1

2N/2	(N/2)
. (63)

The second term in the last line of equation (61) appears formally only if N is odd. We see
that R̃R

1 (x1) is an analytic function of N which is manifestly positive. This result has been
obtained by Edelman, Kostlan and Shub [5] and is also valid for odd N. We have to subtract
just the second term in (61) which is proportional to 
 (N odd) (which means that this is only
1 if N is odd otherwise it is zero) to get the correct answer valid for even and odd N. We will
see the consequences in the following.

4.3. Odd N

If N is odd R1(z1) is given by

R1(z1) = 1

2
Tr

1

B̃

δB̃

δf (z1)

∣∣∣∣
f ≡1

=
(

1

2

1...N∑
k,l

B−1
kl

δÃlk

δf (z1)
+

N∑
l=1

B−1
N+1,l

δC̃l

δf (z1)

)∣∣∣∣∣
f ≡1

=
∫

d2z2 F(z1, z2)KN(z2, z1) +
N∑

l=1

B−1
N+1,lδ(y1) e−x2

1 /2xl−1
1 . (64)

10
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Since the complex-eigenvalue part RC
1 (z1) is again given by Edelman’s expression (57) and

the real-eigenvalue part RR
1 (x1) is given by equation (62) we conclude that B−1

nm has again a
very simple tridiagonal structure

B−1
nm = 1

2
√

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
0! 0 . . . . . . 0

1
0! 0 − 1

1!

. . .
...

0 1
1!

. . .
. . .

. . .
...

...
. . .

. . .
. . . −1

(N−2)! 0
...

. . . 1
(N−2)! 0 −2

√
2πDN

0 · · · · · · 0 2
√

2πDN 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (65)

only the last row and column make the matrix B−1 invertible. The kernel now is given by

KN(z2, z1) =
1...N∑
k,l

B−1
k,l z

k−1
2 zl−1

1 = z2 − z1

2
√

2π

N−2∑
n=0

(z2z1)
n

n!
(66)

while

B−1
N+1,k = −B−1

k,N+1 = δk,N

1

2N/2	(N/2)
= δk,NDN. (67)

In a diagrammatic representation, which we will use and explain later, we have with an obvious
notation

R1(z1)=

1

+

1

=
2

F(1, 2)KN (2, 1) + δ(y1)
xN−1

1 e−x2
1/2

2N/2Γ(N/2)
Θ(N odd) . (68)

The second dot in the first diagram carries no index, which means that the corresponding
variable z2 is integrated over, while the cross in the second diagram corresponds only to one
point resulting from an additional Grassmannian introduced only for odd N. Note that the last
term gives exactly the correct density for N = 1.

5. Correlation functions

5.1. Diagram expansion

Let us write f (z) = 1 + u(z) and

Ãkl = Akl + Ckl =
∫

d2z1 d2z2 zk−1
1 zl−1

2 F(z1, z2)(1 + u(z1))(1 + u(z2)) (69)

and try to expand Z[1 + u] in powers of u(z) to get the n-point densities. To this end we first
expand Z[1 + u] in powers of Ckl (first the even-N case)

Z[1 + u] = KN

∫
dη∗

1 . . . dη∗
N exp

(
−1

2

∑
kl

(Akl + Ckl)η
∗
kη

∗
l

)

= Z0

∞∑
n=0

1

n!

〈(
−1

2

∑
kl

Cklη
∗
kη

∗
l

)n
〉

0

. (70)
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The bracket (expectation value) in the second line is defined by the power expansion of the
first line, i.e. is a Gaussian Grassmannian average, for which moments can be calculated by
contractions including a minus sign for transpositions (fermionic Wick theorem). We now use
this fermionic Wick theorem with

η∗kη
∗
l 0 = A−1

kl =k l (71)

−Ckl =k l (72)

connecting diagrams at the vertices (dots) such that with the linked cluster theorem

ln(Z[1 + u]/Z0) = + + + . . . (73)

or

Z[1 + u]/Z0 = 1 + + +

+ + . . . + . . . (74)

This includes for each internal point a summation over indices k, l, a minus sign for each
closed fermion loop and the factor 1/(order of invariance group) for each diagram. It is
important for the symmetry that in the expansion of the Pfaffian the fermion lines carry no
direction. However, translating the diagrams one has to go through it in a certain direction,
which determines the sign of each element. If we went through it in the opposite direction, all
elements would obtain the opposite sign, because they are skew-symmetric. The result is the
same. Z0 is just given by Z0 = Z[1] = 1.

Introducing the kernel KN(z1, z2) from equation (55) and F(z1, z2) from equation (42)
we reinterpret the diagrams as

KN (z1, z2) = KN (1, 2) = 1 2 (75)

−F(z1, z2)(u(z1) + u(z2) + u(z1)u(z2)) = 1 2 (76)

and at each internal point z we have now an integration over d2z (indices 1, 2 now correspond
to the continuous variables z1, z2). In an obvious notation we now produce all correlation
functions by functional derivatives w.r.t. u(z):

δZ[1 + u]
δu(z1)

=

1

+

1

+

1

+

1

+ . . . +. . .

(77)

δ2Z[1 + u]
δu(z1)δu(z2)

=

2

1

+

2

1

+

1 2

(78)

12
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1

2

++

1

2

+

1

2 + . . . (79)

and so on. A label 1 means a functional derivative w.r.t. u(z1) and thus at this vertex appears
no integration. At a wavy line one can only differentiate twice and only at different vertices,
otherwise there is no contribution. To obtain all correlation functions or n-point densities we
have to put u(z) ≡ 0 at the end. Then a lot of diagrams disappear. In the following diagrams
we reinterpret a wavy line as

1 2 ⇒ −F(z1, z2) (80)

and obtain

R1(z1) =

1

(81)

R2(z1, z2) =

2

1

+

1 2

+

1

2

+ 2

1

(82)

and so on. These diagrams have no longer an invariance group, because the external vertices
which are not integrated over are labeled and distinguishable. Here no wavy line is possible
that has only internal vertices. Differentiating a diagram, which contains (76), once w.r.t.
u(z1) at u ≡ 0 yields a wavy line with one external vertex (1). Differentiating a diagram,
which contains (76), w.r.t. u(z1) and u(z2) at u ≡ 0 yields a wavy line with two external
vertices (1, 2).

We could also calculate the cluster functions which are in each order only the connected
diagrams, i.e. here the one-loop diagrams.

We will see that in the case of odd N the diagrams are slightly modified. There is an
additional graphical element for the correlation functions (independent of the direction going
through)

1 2 = (−)
zN−1
1

2N /2Γ(N /2)
· e−x2

2 / 2δ(y2)Θ(N odd) (83)

The cross corresponds to the additional artificial Grassmannian and therefore can only appear
once in each diagram. The result for the correlation functions is then

R1(z1) =

1

+

1

(84)
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R2(z1, z2) =

2

1

+

1 2

+

1 2

+

1 2

+

1

2

+

1

2

+

1

2

+1

2

+ 1

2

+ 1

2

(85)

and so on. The terms with the crosses, which are only present if N is odd, are obtained by
labeling in all possible ways one internal vertex in the original diagrams by a cross. One has
still to keep in mind that closing a loop yields an additional minus sign.

5.2. Correlation functions, N even

Let us translate the diagrams again (for even N): equation (81) leads to equation (51) and
equation (82) to

R2(z1, z2) = F(z1, z2)KN(z2, z1) +
∫

d2z3 d2z4{+F(z1, z3)KN(z3, z1)F(z2, z4)KN(z4, z2)

−F(z1, z3)KN(z3, z2)F(z2, z4)KN(z4, z1)

−F(z1, z3)KN(z3, z4)F(z4, z2)KN(z2, z1)}, (86)

and so on. Now we know how to generate general n-point densities. We observe that at the
external vertices there are no integrations. Thus the diagrams are cut into factors which are
special diagrammatic elements. These are used to build for an n-point density closed loops
with n external vertices, using the rule that a wavy line can only be linked with a straight line,
as is done in equation (85). In the following we will show that the result is just what is called
a quaternion determinant of a self-dual 2n × 2n matrix (k, l = 1, 2, . . . , n):

Rn(z1, z2, . . . , zn) = (−1)n qdet
k l k l

(k l +k l) k l

(87)

The entries are the appearing graphical elements. Possible connections in the diagrams are
those obtained by matrix multiplication, i.e. a straight line is connected to a wavy line and
vice versa. The lower left block in the matrix in equation (87) corresponds to an effective
wavy line which appears always in that combination, e.g. in equation (82) it corresponds to
the sum of the first and the last diagram. The (−1)n in equation (87) reminds us that we have
to take into account a minus sign if we close a loop. The sign of the quaternion determinant
is defined in such a way that in the expansion of Rn(z1, z2, . . . , zn) there appears the positive
term R1(z1) ·R1(z2) · . . . ·R1(zn) coming from the diagonal elements, which gives the behavior
for large separation. We will see that the quaternion determinant is related to a Pfaffian. Since

14
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by construction integration of Rn over d2zn leads to (N − n + 1)Rn−1, equation (87) implies
an integration theorem [6] for this type of Pfaffians. This however includes here all δ-type
contributions to Rn (δ-functions for real eigenvalues and complex conjugate pairs). To separate
all these terms may still require some combinatorial analysis.

5.3. Expansion of a Pfaffian

Let us consider

Z(ε) =
∫

dη∗
1 . . . dη∗

2M exp

(
−1

2

1...2M∑
k,l

η∗
k (Akl + Ckl)η

∗
l

)
(88)

now with Akl = εJkl and J = ( 0 1
−1 0

)
with M × M entries. Obviously Pfaff (Ckl) =

limε→0 Z(ε). Now we expand Z(ε) in powers of C using the fermionic Wick theorem with
A−1

kl = − 1
ε
Jkl . Since Z0 = (−1)M(M−1)/2εM in the limit ε → 0 only terms with power M of

A−1 survive, higher powers do not occur. On the other hand 〈η∗
kη

∗
l 〉0 = − 1

ε
Jkl . Thus we have

= . . .

M times

+ . . .

(M − 2) times

+ . . .

= (−1)M qdet (J · C) = (−1)M qdet ( )

(89)

with = −J , = −C. .

We see that only the matrix JC appears which is selfdual (i.e. J (JC)T J T = JC if
C = −CT ). We may also replace the expansion of the Pfaffian by an indexed diagram
expansion in which all external vertices are different. To see this formally let Ckl → λkCklλl

with λk = 1 for k = M +1,M +2, . . . , 2M and differentiate Pfaff (λCλ) w.r.t. λ1, λ2, . . . , λM .
This produces the indexed diagram expansion and since Pfaff (λCλ) = Pfaff(C) ·λ1λ2 · · · λM

the result is the same. This proves our claim (87), i.e. the n-point density Rn as a Pfaffian is
just a polynomial of total degree n of its entries. Note that if one uses a different definition of
the Pfaffian with a different order of Grassmannians the factor (−1)M(M−1)/2 in (89) may be
canceled.

5.4. Correlation functions, N odd

Let us recall for odd N the diagrammatic expansion on the level where the vertices carry the
number k of Grassmannian η∗

k . Then again

η∗kη
∗
l 0 = B−1

kl =k l

− Ckl =k l (90)

with k, l = 1, 2, . . . , N and there are additional graphical elements

η∗N+1η
∗
k 0 = B−1

N+1,k = k

− dx e−x2/ 2xlu(x) = l
(91)

15



J. Phys. A: Math. Theor. 41 (2008) 405003 H-J Sommers and W Wieczorek

We have from equation (67) B−1
N+1,k = δkN/2N/2	(N/2) = −B−1

k,N+1 and find that in the
diagrammatic expansion only the combination

k l = − δk,N

2N/2Γ(N /2)
· dx e−x2/ 2xl−1u(x) (92)

occurs. In this diagram it is not important in which direction one goes through it: the result is
the same. Thus one obtains the additional diagrams

+ + + + . . . + . . . (93)

Only diagrams with one cross are needed. At each vertex without cross there appears a
k-summation over zk−1.

Now we may again reinterpret the diagrams as

1 2 = −F(1, 2)(u(1) + u(2) + u(1)u(2))

1 2 = − u(1)e−x2
1 /2δ(y1)zN−1

2 /2N /2Γ(N /2)

1 2 = KN (1, 2)

(94)

with integration at internal vertices. Remember that a closed loop yields a factor (−1).
Finally we differentiate the diagrams w.r.t. u(z) several times and then put u(z) ≡ 0 to obtain
all correlation functions. Note that there is no differentiation possible at a cross. The result is
the correlations (84), (85) and corresponding higher orders.

The general formula for the n-point densities may again be written as a quaternion
determinant with k, l = 1, 2, . . . , n:

Rn(z1, . . . , zn) = (−1)n qdet
(k l +k l) k l

k l (k l +k l)
(95)

where a label k means the site zk and

k l =k l+k l +k l +k l (96)

Here the diagrams are interpreted as in equations (75), (80), (83). Since the quaternion
determinant is a Pfaffian and the crossed terms factorize, it is easy to see, due to η2 = 0
for a Grassmannian η, that only the first-order terms in an expansion of powers of the cross
contribute. We also do not have to worry about the δ-functions which appear inside the
quaternion determinant in all elements except , since we see from the expansion of
the Pfaffian that each δ-function appears at most once at each site. The δ-functions single
out special correlations of real eigenvalues (δ(yk)) or pairs of complex conjugate eigenvalues
(δ2(zi − zj )).
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5.5. Explicit expressions

Let us write again explicitly the n-point densities as quaternion determinants

Rn(z1, . . . , zn) = (−1)n qdet

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G(1, 1) · · · G(1, n) K(1, 1) · · · K(1, n)

...
. . .

...
...

. . .
...

G(n, 1) · · · G(n, n) K(n, 1) · · · K(n, n)

W(1, 1) · · · W(1, n) G(1, 1) · · · G(n, 1)

...
. . .

...
...

. . .
...

W(n, 1) · · · W(n, n) G(1, n) · · · G(n, n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(97)

with

G(1, 2) = 1 2+1 2

K(1, 2) = KN (1, 2) = 1 2

W (1, 2)= 1 2+1 2+1 2+1 2

(98)

The quaternion determinant of a matrix C is, according to equation (89) up to an overall sign,
equal to the Pfaffian of J · C. The sign is in our case easy to find since all Rn � 0. G(1, 2)

may be split into two parts depending on whether the second argument is real or complex:

G(1, 2) = GC(1, 2) + GR(1, 2)δ(y2). (99)

Then we obtain

GC(1, 2) = KN(z1, z2)2i sgn(y2) e−x2
2 +y2

2 erfc(|y2|
√

2)

= z1 − z2

2
√

2π
ez1·z2

∫ ∞

z1·z2

du e−u uN−2

(N − 2)!
· 2i sgn(y2) e−x2

2 +y2
2 erfc(|y2|

√
2) (100)

analytic in N. In the second part GR(1, 2) we can make a partial integration as in section 4.2
which cancels the term with the cross, which is present only for odd N, and obtain

GR(1, 2) = − 1√
2π

e−x2
2 +x2z1

∫ ∞

x2·z1

du e−u uN−2

(N − 2)!

− 1√
2π

e−x2
2 /2
∫ x2

0
dx e−x2/2 xN−2

(N − 2)!
zN−1

1 (101)

which is analytic in N and valid for even and odd N.
Finally we consider W(1, 2) which splits into four parts

W(1, 2) = WCC(1, 2) + δ(y1)W
RC(1, 2) + WCR(1, 2)δ(y2) + δ(y1)δ(y2)W

RR(1, 2). (102)

First we obtain WCC(1, 2):

WCC(1, 2) = −2i sgn(y1) e−x2
1 +y2

1 erfc(|y1|
√

2)

×{δ2(z1 − z2) + KN(z1, z2)2i sgn(y2) e−x2
2 +y2

2 erfc(|y2|
√

2)}
= −2i sgn(y1) e−x2

1 +y2
1 erfc(|y1|

√
2){δ2(z1 − z2) + GC(z1, z2)}. (103)

Again in WRC(1, 2) and WCR(1, 2) we can make a partial integration to cancel the cross term
and obtain

WRC(1, 2) = −WCR(2, 1) = 2i sgn(y2) e−x2
2 +y2

2 erfc(|y2|
√

2)GR(z2, x1) (104)

again valid for even and odd N and analytic in N.
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Finally the most complicated term WRR(1, 2) can also be reduced to GR(1, 2). One
splits off a factor e−(x2

1 +x2
2 )/2 and derives a first-order differential equation in x1. Using the

skew-symmetry and again a partial integration to cancel the cross-terms one arrives at

WRR(1, 2) = 2
∫ x1

x2

dx e−(x2
1 +x2)/2GR(x, x2) − e−(x2

1 +x2
2 )/2 sgn(x2 − x1)

= −
∫ x2

x1

dx[e−(x2
2 +x2)/2GR(x, x1) + e−(x2

1 +x2)/2GR(x, x2)]

− e−(x2
1 +x2

2 )/2 sgn(x2 − x1). (105)

Again this expression is valid for even and odd N and analytic in N. The second line is a
nontrivial consequence of the skew-symmetry of WRR(1, 2). In all cases the analyticity in N
is easily seen for arguments z1, z2, . . . , zn positive, but then can be extended.

At the end of this section let us write some correlations in the notation of this section:

R1(1) = −G(1, 1) (106)

R2(1, 2) = G(1, 1)G(2, 2) − G(1, 2)G(2, 1) − W(1, 2)K(2, 1). (107)

The last two terms yield the connected part, i.e. the cluster function

Rcon
2 (1, 2) = −G(1, 2)G(2, 1) − W(1, 2)K(2, 1). (108)

In general one draws all possible diagrams with elements G,K,W and the sign
(−1)number of fermion loops.

5.6. Numerical evaluation

Let us introduce the function φ(z):

φ(z) = −2i sgn(y) e−x2+y2
erfc(|y|

√
2) = −φ(z) (109)

and the incomplete Gamma function γ ∗(n, x):

	(n)xnγ ∗(n, x) =
∫ x

0
du e−uun−1. (110)

γ ∗(n, x) is an analytic function of both arguments. It has the power expansion

γ ∗(n, x) = e−x

∞∑
m=0

xm

	(n + m + 1)
. (111)

Then we obtain as basic functions from equations (55), (58), (100), (101)

K(1, 2) = KN(z1, z2) = z1 − z2

2
√

2π
ez1z2(1 − (z1z2)

N−1γ ∗(N − 1, z1z2)) (112)

and

GC(1, 2) = GC(z1, z2) = −KN(z1, z2)φ(z2) (113)

and

GR(1, 2) = GR(z1, x2) = − 1√
2π

e−x2
2 +x2z1(1 − (z1x2)

N−1γ ∗(N − 1, z1x2))

− e−x2
2 /2(z1x2)

N−1

2N−1/2	(N/2)
γ ∗
(

N − 1

2
,
x2

2

2

)
. (114)
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Figure 1. 1-point density R1(z1) from simulation for N = 20. The total integral is normalized
to N.

From this we obtain

WCC(1, 2) = φ(z1)(δ
2(z1 − z2) + GC(z1, z2))

= φ(z1)δ
2(z1 − z2) + W̃CC(1, 2). (115)

The first term leads to a self-correlation of a complex conjugate pair. Then

WRC(1, 2) = −WCR(2, 1) = −φ(z2)G
R(z2, x1) (116)

and WRR(1, 2) is given by equation (105). These formulae immediately yield all n-point
densities

RC
1 (1) = −GC(1, 1) = KN(z1, z1)φ(z1) (117)

RR
1 (1) = −GR(1, 1) = 1√

2π

(
1 − x

2(N−1)
1 γ ∗(N − 1, x2

1

))
+

e−x2
1 /2x

2(N−1)
1

2N−1/2	(N/2)
γ ∗
(
N − 1

2
,
x2

1

2

)
(118)

and also R2(1, 2) splits into five parts

R2(1, 2) = RC
1 (1)δ2(z1 − z2) + RCC

2 (1, 2) + RRC
2 (1, 2)δ(y1)

+ RCR
2 (1, 2)δ(y2) + RRR

2 (1, 2)δ(y1)δ(y2). (119)

All the terms follow from equation (107). The first term corresponds to the correlation of
a complex eigenvalue with its complex conjugate. The other smooth terms correspond to
correlation complex–complex, real–complex, complex–real, real–real. For completeness let
us write these terms:

RCC
2 (1, 2) = GC(1, 1)GC(2, 2) − GC(1, 2)GC(2, 1) − W̃CC(1, 2)K(2, 1),

RRC
2 (1, 2) = GR(1, 1)GC(2, 2) − GC(1, 2)GR(2, 1) − WRC(1, 2)K(2, 1), (120)

RCR
2 (1, 2) = GC(1, 1)GR(2, 2) − GC(2, 1)GR(1, 2) − WCR(1, 2)K(2, 1),

RRR
2 (1, 2) = GR(1, 1)GR(2, 2) − GR(1, 2)GR(2, 1) − WRR(1, 2)K(2, 1).
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Figure 2. Left: 2-point density R2(z1, z2) as a function of z1, for fixed z2 = 2 + 2i and the same
simulation data as in figure 1 with N = 20. The total integral is normalized to (N − 1) · R1(z2).
Right: the same for a simulation with N = 15 and z2 = 2 + 0.5i.
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Figure 3. 3-point density R3(z1, z2, z3) from simulation for N = 20 and fixed z2 = 2 + 2i,
z3 = −2 + 2i as function of z1 (unnormalized).

In the following we do some numerical simulations and compare them with numerical
evaluations of the above formulae. We draw random matrices Jij from the Gaussian ensemble
(1) and plot first a histogram for the eigenvalues in the complex plane, which yields R1(z1)

(figure 1). We see that the eigenvalues lie in a circle with radius of order
√

N and that a
finite fraction lies strictly on the real axis repelling the remaining pairs of complex conjugate
eigenvalues from the real axis. Then we take the same set of eigenvalues and choose only
that subset with one eigenvalue close to a fixed value z2. Plotting a histogram of this set we
obtain R2(z1, z2) (figure 2). We see that the complex eigenvalue z2 repells all the other with
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Figure 4. Analytical result for RR
1 (x1) for N = 20 as a function of x1 from equation (118).
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Figure 5. Analytical result for RC
1 (z1) for N = 20 as a function of z1 from equation (117).

a cubic law in distance and that there is again a finite fraction of eigenvalues on the real axis
corresponding to complex–real correlation. Furthermore, one finds a δ-peak at the complex
conjugate site z2 and also repulsion from that point. We can even take the same data, fix two
eigenvalues z2 and z3 and plot R3(z1, z2, z3) as a function of z1 (figure 3).

Using the above formulae we can calculate RC
1 (1), RR

1 (1), RCC
2 (1, 2), RRC

2 (1, 2), RRR
2 (1, 2)

etc exactly. Below we plot the functions RR
1 (x1), R

C
1 (z1), R

RC
2 (x1, z2) and RCC

2 (z1, z2) for
the same fixed z2 as in the simulation (figures 4–7). A further plot (figure 8) shows the
correlation RRR

2 (x, 0) for N = 2, 3, 4, 5, 6, for which we have the analytical formula from
equations (120), (114), (105), (112):

RRR
2 (x, 0) = 1√

2π
RR

1 (x) − 1

2π
e−x2

+
|x|

2
√

2π
e−x2/2 erfc

( |x|√
2

)
. (121)
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Figure 6. Left: analytical result for the correlation RRC
2 (x1, z2) for N = 20 and fixed z2 = 2 + 2i

as a function of the real x1 from equation (120). Right: the same for N = 15 and z2 = 2 + 0.5i.
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Figure 7. Left: analytical result for the correlation RCC
2 (z1, z2) for N = 20 and fixed z2 = 2 + 2i

as a function of z1 from equation (120). Right: The same for N = 15 and z2 = 2 + 0.5i.
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Figure 8. Analytical result for the correlation RRR
2 (x, 0) for N = 2, 3, 4, 5, 6 from equation (121).
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The only N-dependence is in the first term RR
1 (x), which is almost constant in x for sufficiently

large N. For small |x| we have linear-level repulsion. The connected correlation at the special
point is independent of N and decays with e−x2

. At this point it is worth mentioning that the
density of only complex eigenvalues (figure 5) is very reminiscent but not equal to the same
density for the symplectic Ginibre ensemble [6, 18].

6. Conclusions

In this paper we have derived, starting from the Gaussian ensemble, closed analytical
expressions for all correlation functions, i.e. n-point densities, of eigenvalues of the real
Ginibre ensemble of real asymmetric matrices, which is invariant under real orthogonal
transformations. These n-point densities are not absolutely continuous. They contain
contributions which are concentrated by δ-functions on the real axis and also point-measures
for pairs of complex conjugate eigenvalues which are always present, because the eigenvalues
of a real asymmetric matrix are either real or pairwise complex conjugate. The n-point
densities are written as quaternion determinants of certain 2n × 2n selfdual matrices, or as
Pfaffians of corresponding skew-symmetric matrices. The Pfaffians can be derived from a
zero-dimensional fermion field theory, similar in structure to the matrix Green functions in
the Nambu space for superconductivity. All the n-point densities are expressible in terms of a
skew-symmetric measureF(z1, z2) containing one part concentrated on the complex conjugate
pairs z1 = z2 and one part on the real eigenvalues z1 = z1, z2 = z2. For the N-dimensional
matrix Jij one constructs from F(z1, z2) a skew-symmetric kernel KN(z1, z2) which together
with F(z1, z2) yields the building blocks for the correlations.

To calculate KN(z1, z2) one has to invert an N × N antisymmetric matrix Akl related to
F(z1, z2), which looks complicated, which however turns out to yield a very simple tridiagonal
structure for A−1

kl . To find this it is enough to compare the Edelman result for the complex
1-point density with the general form of the 1-point density. This is sufficient to obtain all
correlations in the case of even dimension N. In the case of odd dimension N one has to increase
the dimension artificially by 1 and has to invert instead the (N + 1) × (N + 1) dimensional
skew-symmetric matrix Bnm. Again a simple argument using the result of Edelman, Kostlan
and Shub for the real 1-point density reveals that B−1

nm has again a simple tridiagonal (but
slightly more complicated) structure. In this paper we do not discuss detailed asymptotics for
large N, which has partly been discussed elsewhere [1, 8–11] and which follows essentially
from the asymptotic kernel KN(z1, z2) � (z1 − z2) e+z1z2/2

√
2π . However, we show that the

different formulae of the correlation functions for even and odd N can be combined always in
one formula which depends on continuous and even analytic functions of N.

Finally we have presented some numerical simulations which make clear the complicated
structure of the correlations, for example the 2-point correlation. There is a smooth background
of complex–complex correlations, then a point measure for a complex conjugate pair, a part
with one δ-function concentrated on the real axis for complex–real correlations and a part
corresponding to real–real correlations doubly concentrated on the real axis. In comparison
we have shown also some numerical evaluations of the analytical formulae.

For the future there remain to be discussed more detailed asymptotics and more
sophisticated functions like level spacings and distributions of extremal eigenvalues.
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